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ABSTRACT In recent years, the one-dimensional bin packing problem (1D-BPP) has become one of the
most famous combinatorial optimization problems. The 1D-BPP is a robust NP-hard problem that can
be solved through optimization algorithms. This paper proposes an adaptive procedure using a recently
optimized swarm algorithm and fitness-dependent optimizer (FDO), named the AFDO, to solve the BPP.
The proposed algorithm is based on the generation of a feasible initial population through a modified
well-known first fit (FF) heuristic approach. To obtain a final optimized solution, the most critical parameters
of the algorithm are adapted for the problem. To the best of our knowledge, this is the first study to
apply the FDO algorithm in a discrete optimization problem, especially for solving the BPP. The adaptive
algorithm was tested on 30 instances obtained from benchmark datasets. The performance and evaluation
results of this algorithm were compared with those of other popular algorithms, such as the particle swarm
optimization (PSO) algorithm, crow search algorithm (CSA), and Jaya algorithm. The AFDO algorithm
obtained the smallest fitness values and outperformed the PSO, CS, and Jaya algorithms by 16%, 17%, and
11%, respectively. Moreover, the AFDO shows superiority in terms of execution time with improvements
over the execution times of the PSO, CS, and Jaya algorithms by up to 46%, 54%, and 43%, respectively. The
experimental results illustrate the effectiveness of the proposed adaptive algorithm for solving the 1D-BPP.

INDEX TERMS Bin packing, first fit heuristic, fitness-dependent optimizer, swarm intelligent algorithms.

I. INTRODUCTION
The bin packing problem (BPP) is a commonly studied
combinatorial optimization problem; it can be defined as a
finite collection of items with varying specifications to be
packed into several bins or containers [1] without exceed-
ing the capacity of each bin. The BPP can be viewed as
a particular case of the one-dimensional (1D) cutting-stock
problem [2], [3]. The BPP focuses on minimizing the number
of used bins or the amount of wasted space inside a bin.
Therefore, solving the BPP can help solve many real-world
problems, such as cutting-stock packaging design in supply
chain management [4] and industrial applications [5], [6].
The 1D-BPP allows items to be packed according to a fixed
dimension. Although this problem seems simple to define,
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it is a well-known NP-hard problem [7], and achieving
an optimal solution is time consuming, especially with the
increasing magnitude of the problem. Therefore, different
approximation solutions have been proposed for solving the
1D-BPP based on heuristic approaches, such as next fit (NF)
and first fit (FF) [8], or through hybrid approximation algo-
rithms, such as FF decreasing (FFD) and best fit decreasing
(BFD) methods [9]. In [9], items were not separated onto
shelves. Although the algorithms, as mentioned earlier, pro-
vide a solution, they are bound to the proposed approximation
ratio. Coffman Jr. et al. [10] provided an overview of the
approximation algorithms used for solving the 1D-BPP.

Another new and popular solution of this problem involves
the use of metaheuristic approaches naturally inspired by bio-
logical, physical, or sociological phenomena; these include
the genetic algorithm (GA) [11], particle swarm optimiza-
tion (PSO) [12], and the tabu search (TS) method [13].
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Cui [14] used the NF heuristic with the GA to solve combi-
natorial optimization problems. One of the main advantages
of metaheuristic approaches for solving various optimization
problems is obtaining high-quality solutions through fewer
iterations (i.e., shorter computational time).

Additionally, metaheuristic approaches are flexible and
straightforward [15], [16]. However, there is no universal
algorithm that addresses all common optimization prob-
lems well. Therefore, solving NP-hard problems is still an
open challenge; thus, in the current study, the 1D-BPP was
approached practically and effectively by proposing an adap-
tive version of the fitness-dependent optimizer (FDO) algo-
rithm called the AFDO. The FDO algorithm is a newly
proposed swarm intelligence algorithm that is stable in both
exploration and exploitation phases compared with other
algorithms based on benchmark test functions and statistical
analysis [17].

Therefore, this study adapted the FDO algorithm to solve
the 1D-BPP. The adaptation occurred in two main phases:
a random initial population is used, and an update to the
algorithm procedure was added. In this study, the FF heuris-
tic was modified to obtain a better initial solution (i.e.,
exploration phase), and an adaptive procedure was then
embedded through operators in the updating stage during
solution improvement to obtain the final optimal solution
(i.e., exploitation phase). A set of experiments was used to test
the feasibility of the proposed algorithm, and the results show
superiority over those of previously used algorithms. To the
best of our knowledge, this is the first study to propose the
use of the FDO algorithm to solve the 1D-BPP in a discrete
domain.

The remainder of this paper is organized as follows.
Section 2 provides an overview of the most recent research
focused on solving the BPP. The mathematical model and
objective function of the BPP are discussed in section 3.
Furthermore, the general structure of the FDO algorithm is
illustrated in section 4. In section 5, we propose themodelling
of the 1D-BPP by using the AFDO algorithm. Section 6
presents the testing of the proposed algorithm on benchmark
datasets and a performance analysis. Finally, section 7 draws
the conclusions.

II. LITERATURE REVIEW
As the BPP is considered an NP-hard problem, its solu-
tion is generally contingent upon the availability of effi-
cient methods. Various exact and heuristic methods have
been proposed to solve the BPP in past years. For example,
Martello and Toth [18] presented a branch-and-bound proce-
dure, where the procedure of Scholl et al. [19] was combined
with TS to develop a new branching schema. A new lower
bound based on the cutting-stock problem was designed
in [20] for BPP. Although exact methods find the best solu-
tion, they are unable to solve the problem when constraints
are added. In addition, these methods are affected by the
size of the problem. Delorme et al. [21] reviewed the most
important exact methods for solving the 1D-BPP.

Some heuristic methods have also been proposed for solv-
ing the 1D-BPP; they provide approximate solutions ranging
from the FF to the best fit (BF) or worst fit and other varia-
tions [22], [23]. Each of these heuristic methods assigns sev-
eral varying objects to the first, best, or worst bins according
to the bin capacity. Although each method displayed good
results in each case, the results are not necessarily optimal.
Heuristic methods cannot be treated as a general approach
because they depend on the nature of the problem. Therefore,
the best solution is achieved when the time of execution
is considered an essential factor, and the worst solution is
achieved when the quality is considered an essential factor.

Recently, researchers have discussed improving the cur-
rent algorithms to produce an optimal solution based on
increasing the number of parameters in and constraints of the
BPP. Korf [24] proposed an improved algorithm for packing
cartons into a minimum number of identical containers based
on a local guided search process.

Based on the advantages of metaheuristic algorithms
over exact methods, one of the most popular metaheuris-
tic algorithms, GA, has been extensively applied to solve
the BPP [25], [26]. In [27], a new island parallel grouping
GA (IPGG) was developed to solve the 1D-BPP based on
a modified class of the GA designed for solving complex
grouping problems. Ross et al. [28], [29] solved the BPP
through combinations of GAs and hyperheuristics. Another
solution for solving the 1D-BPP was based on the greedy
randomized adaptive search (GRASP) procedure [30], and
it was built in two main phases: random initiation based on
the integration of the FF and BF as a first phase and the
application of a TS as the second phase to enhance the initial
solution. In contrast, in the current study, two main stages are
considered; in the first phase, a randomized FF heuristic is
applied to generate initial feasible solutions, and an AFDO
is applied in the second phase to achieve the optimal solu-
tion. Stakic et al. [31] presented different greedy randomized
adaptive search procedure (GRASP) algorithms for solving a
vector BPP and its variants.

Hemmelmayr et al. [32] introduced a solution for the BPP
through a variable neighbourhood search (VNS), and Fleszar
and Hindi [33] combined a minimal bin slack heuristic [34]
with a VNS to combine the advantages of both methods for
solving the 1D-BPP. Loh et al. [35] proposed a simple heuris-
tic based on weight annealing (WA) to solve the BPP and
improve the solution quality. An FFD heuristic was applied
as a first step in [36] to obtain the initial solution, which
was improved through a simulated annealing algorithm. The
FFD heuristic requires a decreasing order of items before
processing, whereas the proposed method does not require
item sorting. With more constraints on packing items, a VNS
can be used to solve the BPP with conflicts [37]. The Firefly
algorithm was presented to solve the 1D-BPP with fixed-
sized bins [38].

A hybrid improvement procedure utilizing TS was pro-
posed in [39] to improve the results when the current solution
was not feasible for the BPP. Similarly, in [40], a multistep
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TS was proposed to solve the BPP, where a partial solution
was first derived based on the dynamic programming of the
item set. An adaptive cuckoo search algorithm was proposed
in [41], which combines the standard cuckoo search with the
decoding mechanism to solve the BPP. Moreover, a quantum
cuckoo search was presented in [42], where the solution
was represented as a binary representation, and the obtained
results were compared with the FFD results. In this paper,
the AFDO solution for the BPP is represented as a 1D discrete
value, where the index identifies the item and the correspond-
ing values represent the bins. The experimental results were
compared with the results of other popular algorithms, such
as PSO, the crow search algorithm (CSA), and the Jaya algo-
rithm. Although these algorithms are successful in solving
various well-known problems, the proposed algorithm has a
crucial difference in improving the quality of the solution.

Variants of other algorithms [43], [44] have been proposed
for solving the 1D-BPP, and their results were evaluated
through various benchmark datasets. In this paper, the pro-
posed adaptive algorithm was tested using three benchmark
datasets with various item weights and bin capacities. The
results of the AFDO algorithm for solving the 1D-BPP were
better than those of other algorithms in terms of achieving the
optimal solution (i.e., the minimum number of bins) within a
reasonable execution time.

III. MATHEMATICAL MODEL OF THE 1D-BPP
Solving the BPP can be considered practical for many real-
life problems, such as collecting musical pieces to be stored
on audio compact discs at maximal capacity, filling up con-
tainers, job scheduling, and passenger bus allocation [8]. All
of these problems can be modelled as BPPs, with the primary
constraint being that the set of items assigned to a bin should
not exceed a specific capacity. Therefore, the aim is to use
as few bins as possible. An extended view of the 1D-BPP
mathematical model can be found in [21], [45], where items
had a single dimension (size, weight, or any other measure).
The general mathematical formula of the 1D-BPP can be
described as follows.

Given a set of n items, I = I1, . . . , In, capacity C ∈ N, and
size function S : I → N, the objective is to find a feasible
assignment f that minimizes the number of used bins. The
feasible assignment of items into N bins can be considered a
partitioning process for the set of items, P = {P1, . . . ,PN }.
For each Pk , the sum of the item sizes or weights in Pk must
not exceed the capacity C , which can be modelled as follows.
The objective function is minimized as

f (P) =
N∑
k=1

Pk

subject to the following constraints.
Constraint (1):

Pk ∈ {0, 1} ∀k ∈ P

Constraint (2):∑
i∈Pk

Si ≤ C ∀k ∈ {1, . . . ,N }

Constraint (3):∑
k∈P

Ii,k = 1 ∀i ∈ {1, . . . , n}

Constraint (4):

Ii,k ∈ {0, 1} ∀i ∈ I and ∀k ∈ P

Constraint (1) is a decision variable related to the number
of partitions used (i.e., bins), which is one if bin k is used and
0 otherwise. Capacity constraint (2) guarantees that the total
number of items in each bin does not exceed the bin capacity
(assuming that all bin capacities are identical). Constraints (3)
and (4) guarantee that each item is assigned to precisely
one partition (i.e., bin). However, the 1D-BPP is an NP-hard
problem that requires an efficient algorithm for its solution.

IV. FDO ALGORITHM
In recent years, many researchers working on optimization
problems have tried to develop new algorithms to apply to
real-world optimization problems. One of the most recent
swarm intelligent algorithms that is inspired by nature is the
FDO developed in 2019 [17]. The FDO algorithm encom-
passes the specific characteristics of bee swarms in the
reproductive process and their collective decision-making
behaviours. However, the FDO algorithm differs from the
honeybee algorithm or artificial bee colony algorithm.
Furthermore, FDO somewhat mimics the particle position
updating process of the PSO algorithm.
The PSO algorithm requires more computations in terms

of updating both the velocity and the particle positions, and
the FDO requires fewer computations for updating the posi-
tions. Moreover, the FDO algorithm was tested on a group
of 19 classic benchmark test functions, and the results showed
that its efficiency was comparable to the PSO efficiency. Bees
are social insects that live in hollow trees or small caves. They
work in groups in colonies called hives [46]. There are three
kinds of bees in a natural colony: queen bees, worker bees,
and drones or scout bees. Each one has a distinct role and task
according to its characteristics. The FDO focuses on the task
of the scout bees, i.e., the exploration of the environment to
find and locate a new place for the colony to build a hive (i.e.,
exploit preferable hives). Once a suitable location is found,
the bees perform a ‘‘dance’’ to interact with the swarm [47].
For algorithmic representation, each hive exploited by a scout
bee (i.e., the artificial search agent) represents a possible
solution, and the best hive represents the global optimum
solution according to the fitness weight. The main steps in
the FDO algorithm are discussed as follows, and the overall
process is shown in Fig. 1.
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FIGURE 1. Flowchart of the FDO algorithm.

A. STEP 1 (INITIAL POPULATION)
The initial population consists of a random set of artificial
scout bees in the search space Xi(i = 1, 2, . . . , n). Each scout
bee position represents a solution. These bees try to find a
better hive by searching randomly for more positions and
evaluating the locations to allocate resources for the best one.

B. STEP 2 (SCOUT BEE FITNESS WEIGHT)
Each scout bee position is evaluated according to the fitness
weight, as represented by the following equation:

fw =

∣∣∣∣ f (X∗i,t )f (Xi,t )

∣∣∣∣ ∗ wf (1)

where f (X∗i,t ) is the fitness value of the global best solution,
f (Xi,t ) is the fitness value of the current solution at iteration t ,
and wf is the weight factor. Considering wf= {0, 1}, in the
case of zero (i.e., neglected), the algorithm provides a stable
search, whereaswf= 1 represents a high level of convergence
and a low chance of coverage. Considering that fw ∈ [0, 1],

fw=1 if


f
(
X∗i,t

)
is the current soluion

f
(
X∗i,t

)
= f

(
Xi,t

)
f
(
X∗i,t

)
and f

(
Xi,t

)
have the same fitness value

(2)
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Furthermore, fw = 0when f
(
X∗i,t

)
dramatically affects the

movement of a bee to a new position, as described in step 3.

C. STEP 3 (SCOUT BEE MOVEMENT)
The scout bees move from their current position at iteration t
to a new position by adding ‘‘pace’’ to find a better position,
as shown in equation (3).

Xi,t+1 = Xi,t + pace (3)

where Xi represents the current position of the scout bee at
iteration t and pace is the movement rate, which depends on
the value of the fitness weight fw, as shown in equation (4),
for different cases. The direction of pace is based on a random
mechanism.

pace=


Xi,t ∗ r if fw = 1or 0 orf

(
Xi,t

)
= 0

(X i,t − X
∗
i,t ) ∗ fw ∗ (−1) if 0 < fw < 1 and r < 0,

(X i,t − X
∗
i,t ) ∗ fw if 0 < fw < 1 and r ≥ 0

(4)

where r is a random number in the range of [−1, 1]. Unlike
any other similar algorithm, updating the FDO is dependent
only on the fitness weight fw and random number r .

D. STEP 4 (TERMINATION CONDITION)
The fitness value of each scout bee is computed for each
iteration, and the locations of the new hives are updated. This
process is repeated until a termination condition is satisfied
(i.e., the maximum number of iterations tmax is reached).
At the end of the iterations, the global best solution is pro-
duced as the final solution.

V. AFDO FOR THE 1D-BPP
In this section, we propose an AFDO algorithm to improve
the BPP solution quality. This adaptive version is based on
the generation of a feasible random initial population through
a randomized FF heuristic. The FF heuristic is a well-known
and simple heuristic for the 1D-BPP. It is a greedy algorithm
that packs each item into the lowest-indexed bin and ensures
that the capacity constraint is not violated. Furthermore,
at least one solution representing the optimal solution is guar-
anteed to exist [48], based onwhich set of randommovements
is applied to update the bee location, generate a new position
and obtain a global best solution. The steps of the proposed
AFDO method are discussed in detail as follows.

A. STEP 1 (SCOUT BEE REPRESENTATION)
Each artificial scout bee represents a candidate solution to
the BPP. The presentation scheme for the solution is a critical
part of solving any optimization problem. In this paper, each
assignment Pk can be represented by a vector of n dimensions
of integer numbers, and indices and values are used to identify
the item and represent the bin, respectively, as shown in Fig. 2.
This representation helps minimize the number of bins used
and allows a group of items to be packed into the same bin
without violating the bin capacity constraint.

FIGURE 2. Scout bee candidate solution (Pk).

Fig. 2 represents the packing of 10 items into five bins,
where items 1, 3, and 4 are packed into bin 1; items 2 and 7
are packed into bin 2; and so on, according to the capacity
constraints.

B. STEP 2 (INITIAL POPULATION GENERATION)
Each run of the AFDO algorithm starts with the generation
of an initial population. The quality of the initial popula-
tion considerably affects both the execution time and result
quality. In this study, the FF heuristic [49] was modified to
allow for the random generation of different initial solutions.
The basic concept of the modified FF heuristic based on the
packing of a randomly selected item from a shuffled list of
items to the first suitable bin is that if the item does not fit
any available bin, then a new bin is created to pack the item.
To illustrate the modified FF heuristic, consider a set of 10
items (i.e., I = I1, . . . , I10); the corresponding weighted
items are packed into bins with identical capacities of 10
(C = 10). Fig. 2 shows the standard representation of an FF
heuristic that packs the items into five bins. Fig. 3 shows the
list of items and three randomly generated candidate solutions
from the modified FF.

FIGURE 3. Illustration of a random population.

Each solution Pk in the population is formed by packing a
number of items into a number of bins. The characteristics of
the modified FF are twofold. First, the modified FF allows for
the generation of different solutions with different packing
schemes; this approach is suitable and practical for cases
where the target number of bins is not known. As shown
in Fig. 3, one of the solutions allows the items to be packed
into four bins. Second, the modified FF heuristic allows the
generation of diversified feasible solutions that can be used
as the starting stage for the proposed algorithm.
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C. STEP 3 (FITNESS VALUE CALCULATION)
At each iteration, every scout bee in the population is eval-
uated according to the fitness function f , and the bee with
the minimum fitness value is assigned the best candidate
solution X∗i,t . The goal of the 1D-BPP is to minimize the
number of used bins N to pack all n items as follows:

N ≥
⌈
(
∑n

i=1
Si)/C

⌉
(5)

With the number of bins as the objective function, the algo-
rithm experiences stagnation due to having many solutions
with different representations and the same number of bins.
However, it is better to integrate this criterion with another
that is focused on bin fullness as follows:

Minmize f (P) = 1−

∑N
k=1 (fillk/C)

k

N
(6)

fillk =
∑
i∈Pk

Si, (7)

where fillk is the full capacity of bin k , C is the bin capacity,
N is the total number of bins, and k is a constant that defines
the equilibrium of the filled bin (usually 2).

In addition to minimizing the number of used bins, the fit-
ness function aims to minimize the number of empty spaces
for each bin remaining after packing the items. Therefore,
the candidate with the lowest fitness value (i.e., lowest unused
space) is considered the best solution. The fitness value rep-
resents how close the solution is to the objective.

D. STEP 4 (SCOUT BEE FITNESS WEIGHT)
The fitness weight fw of each scout bee in the current popula-
tion is computed using equation (1). For a more stable search,
we setwf = 0, which implies that the factor can be neglected.
The computation of fw dramatically affects the movement of
scout bees towards a new position.

E. STEP 5 (SCOUT BEE MOVEMENT)
Updating the position of an artificial scout bee depends on the
movement rate, pace, and direction. In the proposed AFDO
algorithm, to solve the 1D-BPP, only a positive direction
is considered, where r is a random number generated in
the uniform distribution [0, 1] because of the nature of the
problem. Equation (4) can be rewritten in the format of the
AFDO algorithm as follows:

pace=
{
Xi,t ⊗ r if fw = 1or 0 orf

(
Xi,t

)
= 0

(X i,t 	 X
∗
i,t )⊗ fw if 0 < fw < 1 (8)

Equation (8) represents two cases that influence the direc-
tion of movement. In the first case, the result of (X i,t ⊗ r) is
a random sequence of Vs generated from the current solution
depending on the number of items, I, and the number of
bins, N, in a given instance of the BPP dataset. Here, V is
a raw vector (3 tuple) and is represented as V =<a, b, c>
with three indices: a represents the item_id, b represents
the current bin_no., and c represents the new bin_no. The
variable r indicates the probability of a given number of tasks
being selected from I, as illustrated in Fig. 4.

FIGURE 4. Illustration of X i,t⊗r.

In the example in Fig. 4, we assume that there are 10 items
and r = 0.3; then, the number of raw vectors, V = 3,
is randomly chosen from the current candidate solution as
< 7, 1, 2 >, which indicates that 7 items are currently in
bin 1. In this case, the new bin is 2 (i.e., the new bin is
chosen randomly from a list of N bins). The modification of
this parameter in the algorithm allows for the possibility of
obtaining multiple solutions through randomization.

To compute the result of the operator 	, the difference
between the two candidate solutions is computed in terms
of the sequence of raw vectors V; ⊗ is the probability of fw
selecting all raw vectors V from (X i,t	X

∗
i,t ). Fig. 5 illustrates

(X i,t 	 X∗i,t ) ⊗ fw, where (X i,t 	 X∗i,t ) returns the value
representing how far the current candidate is from the global
best candidate in the form of a sequence of raw vectors V .
For example, if item I1 is assigned to the same bin in both
solutions, then the item remains unchanged; otherwise, it is
assigned to the new bin. According to Fig. 5, if item 4 is
assigned to bin 1 inXi,t and bin 3 inX∗i,t , thenV =< 4, 1, 3 >.

FIGURE 5. Illustration of (X i,t 	 X∗
i,t )⊗fw.
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From the two cases mentioned earlier, pace can be viewed
as a sequence of raw vectors V sequentially applied to the
current candidate solution in the population to obtain a new
solution according to equation (9) (Fig. 6).

Xi,t+1 = Xi,t ⊕ pace. (9)

FIGURE 6. Illustration of X i,t+1 = X i,t⊕pace.

The example in Fig. 6 shows that item 4 is currently
assigned to bin 1 and can be assigned to the new bin 3, which
implies that V is equivalent to< 4, 1, 3 >. This reassignment
can occur if and only if the solution does not violate the
capacity constraint (i.e., the weight of item 4 is less than or
equal to the remaining capacity of bin 3). V =< 8, 2, 4 > is
not applied according to the capacity constraints. Generally,
the successful application of V implies the removal of item Ii
from bin O and its packaging into bin P if the remaining
capacity of bin P is greater than or equal to Si. Then, the free
capacities of both bins O and P are updated.

Thus, two critical parameters r and fw aremodified through
the adaptive algorithm to update the positions of artificial
scout bees and improve the range of exploration of the search
space to solve the 1D-BPP.

F. STEP 6 (TERMINATION CONDITION)
Steps 3–5 are repeated until a predefined number of iterations,
tmax , is reached or the number of distinct bins in the current
best solution reaches the optimal solution according to equa-
tion (5). Once the termination condition is satisfied, the best
global candidate solution represents the optimal assignment
of items for the BPP.

VI. EXPERIMENTAL EVALUATION
The proposed algorithm is implemented in Java, and the inte-
grated development environment is Eclipse Java Neon V-1.8,
which encompasses the benefits of object-oriented program-
ming and runs on Intel(R) Core i7 2.80 GHz CPU with 8 GB
RAM and the Windows 10 operating system. The proposed
adaptive algorithm (i.e., the AFDO) was evaluated against
other popular algorithms, such as PSO [50], the CSA [51],
and the Jaya algorithm [52]. All of the algorithms were
tested on a set of publicly available benchmark datasets [53].
The benchmark datasets are divided into three datasets, each
comprising various items and bin capacities. The algorithms

were applied to some instances of the three datasets, and
the qualities of the solutions were evaluated by achieving
the largest (Max.), smallest (Min.), and average (Avg.) fit-
ness values out of ten runs for each instance. Furthermore,
the performance of the proposed algorithm was compared
to the performance of other algorithms according to several
evaluation metrics, such as the minimum number of used
bins (b∗), average fitness value (AvgF), average execution
time (AvgT ), and performance percentage (PP), as illustrated
below.
• The number of used bins (b∗) for each algorithm is
compared with the optimal number for each instance,
m∗.

• The average fitness value (AvgF) is achieved by comput-
ing a fitness function [i.e., equation (6)] over ten runs:

AvgF =
∑10

i=1
fi/10 (10)

where fi is the fitness value of the ith run.
• The average execution time (AvgT ) is computed in mil-
liseconds according to equation (11). The smaller the
execution time is, the more efficient the algorithm.

AvgT =
∑10

i=1
Ti/10, (11)

where Ti is the time need to reach a feasible solution in the ith

run.
• The performance percentage (PP) is computed for the
proposed algorithm and compared against the values of
other algorithms in terms of fitness value minimization
and the execution time as

PP (%) =

(
fPSO,CSA,Jaya − fAFDO

)
fPSO,CSA,Jaya

∗ 100 (12)

where the variations in fPSO,CSA,Jaya are the fitness value
results of the PSO, CS, and Jaya algorithms, respectively.

To achieve a fair comparison between the AFDO and other
algorithms, the population size was initiated with ten individ-
uals for all algorithms, where the maximum number of itera-
tions ranged from 50 to 100 for all the compared algorithms.
The characteristic parameters and different parameters asso-
ciated with each algorithm are listed in Table 1.

The main parameters of the most popular swarm algorithm
PSO are set to two (i.e., C1 = C2 = 2), and CSA has fewer
computation parameters and is affected mainly by the flight
length, which is set to one (i.e., fl = 1), and a randomly
generated awarness probability. Although the Jaya algorithm
is considered a parameterless algorithm that is affected only
by the two random numbers as learning factors, it requires
more computational steps. According to the parameters of the
proposed adaptive algorithm AFDO, the weight factor is set
to zero (i.e., wf = 0) to achieve search stability with high
coverage of the search space. Moreover, the random walk
parameter is generated within the range [0,1] to obtain the
learning factors for Jaya and the awareness probability for
the CSA.
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Algorithm 1 AFDO for solving the 1D-BPP
Input: 1D-BPP occurrence
Output: Feasible BPP solution
Processing:
Step 1. Initialization

Number of items, I; bin capacity, C ; the number of iterations, tmax ; population size, psize
Step 2. Generate initial populationpopthrough the modified FF heuristic

For p = 1 to psize
Shuffle the list of items
While (the list is not empty)

Select item Ii from the list
Assign an item to the first available bin k
If the item does not fit in any available bin, open a new bin k + 1.
Update the residual capacity of the bin rek (i.e., rek = C − Si).

End for
Step 2. Improve the initial solution

While (t ≤ tmax)
/// artificial scout bee evaluation

For each candidate Xi,t in the population pop
Evaluate it according to equation (6)
Set the candidate with the minimum fitness value to the global best value X∗i,t
End for

Set b∗ to the current best number of bins
/// artificial scout bee movement

For each candidate Xi,t in the population pop
Compute fw according to equation (1).
If (fw == 1 orfw == 0 or f

(
Xi,t

)
= 0), then

r = rand();
pace = X i,t ⊗ r
Xi,t+1 = Xi,t ⊕ pace
Else
pace = (X i,t 	 X

∗
i,t )⊗ fw

Xi,t+1 = Xi,t ⊕ pace
End if

End for
Set t = t + 1;
If (b∗ ≤ N ) then stop // according to equation (5)
End while

Step 3. Output the results
The final assignment of items to bins and the minimum number of used bins

A. COMPUTATIONAL RESULTS FOR DATASET 1
The proposed algorithm was tested on 15 instances from
Dataset 1 with various numbers of items n = {50, 100, 200,
500}; bin capacities C = {100, 120, 150}; weights (sizes)
of items wj from [1, 100], [20, 100], and [30, 100] for j =
1..., n; and the minimal number of bins m∗ for each instance.
These instances are named ‘‘NxCyWz_v’’, and the corre-
sponding parameters are listed in Table 2.

Table 3 shows the optimal number of bins (m∗) in each
instance and the results of all the algorithms in terms of the
number of used bins, b∗. Moreover, the AFDO algorithm is
shown to have reached the optimal number of bins in all test
instances (i.e., b∗ = m∗). In the table, the numbers in bold
represent the best results obtained throughout this study.

Moreover, the AFDO algorithm displays high efficiency
in solving the 1D-BPP in terms of the average fitness value,
as illustrated in Table 4.

As shown in Table 4, the adaptive FDO algorithm yielded
the smallest average fitness value for all instances. For exam-
ple, as shown in instance no. 3 (N1C1W1_I), the AvgF of the
proposed algorithm is 0.1662, and those of PSO, the CSA,
and the Jaya algorithm are 0.1846, 0.1803, and 0.1872,
respectively. For other instances, the AFDO obtained a lower
minimum fitness value (Min.) than did other algorithms;
for example, for instance no. 11 (N2C1W1_C), the AFDO
algorithm achieved a minimum fitness value of 0.158, and
the PSO, CS and Jaya algorithm achieved values of 0.194,
0.186 and 0.171, respectively.
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TABLE 1. List of parameters.

TABLE 2. Dataset 1 instances denoted as ‘‘NxCyWz_v’’.

Additionally, the superior capability of the proposed algo-
rithm is evident from the results obtained through compar-
isons with other algorithms; this superiority was achieved
through the feasible improvement of the initial population
and the effective exploration approach to obtain the optimal
solution. According to Table 3, for many instances, such
as instances 2, 7, 8, 9, 10, and 15, the proposed algorithm
reached m∗ (i.e., b∗= m∗), but the other algorithms did not
reach the optimal number of bins. For example, in instance 8
(N1C2W2_R), the AFDO reached the optimal number of bins
(m∗ = 25) for packing 50 items with a bin capacity of 120 for
each bin in the smallest number of iterations, while CSA and
Jaya yielded 26 and PSO reached 27 at the end of the iterative
process, as shown in Fig. 7.

Moreover, the quality of the initial population of the AFDO
solution was improved, and the maximum fitness value of the

TABLE 3. Instances and the minimum number of bins (dataset 1).

FIGURE 7. Fitness value and number of bins for the N1C2W2_R instance.

scout bees was 0.192, which is smaller than the values in the
other algorithms. During the iterations, the solution improved
due to the set of operators used to explore the search space and
achieve a final optimal solution with a minimum fitness value
equal to 0.16.

Although the compared algorithms reached the minimal
number of bins in some instances, such as instances 3, 4, 5
and 13, as shown in Table 4, the AFDO showed superiority
based on the performance percentage in terms of the average
fitness value, as shown in Fig. 8.

For example, in instance 3 (N1C1W1_I), the proposed
adaptive algorithm achieved a better average fitness value
than PSO (by 10%), the CSA (by 8%), and the Jaya algorithm
(by 11%). For other instances, the improvement achieved
by the proposed algorithm ranged from 4% to 10% when
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TABLE 4. The results for dataset 1 (average fitness value, AvgF ).

FIGURE 8. Average fitness value (AvgF) of some instances.

compared with PSO and from 3% to 12% and 11% when
compared with the CSA and Jaya algorithm, respectively.

In terms of the average execution time, AvgT , the proposed
adaptive FDO algorithm is superior to other compared algo-
rithms for achieving a packing solution, as listed in Table 5.

As shown in the table, the AFDO algorithm has the
smallest AvgT when compared with the values of the other
algorithms in reaching an optimal solution. For example,
in instance 3 (N1C1W1_I), the AvgT of the proposed algo-
rithmwas 94.6ms,while those of PSO, the CSA, and the Jaya
algorithm were 143.2, 122.9, and 174.2 ms, respectively.

Fig. 9 shows the average execution times of the compared
algorithms for solving some BPP instances and achieving the
optimal number of bins.

The AFDO algorithm outperforms PSO in minimizing the
average execution time for packing a set of items into themin-
imum number of bins by up to 49% for different instances.
Furthermore, the proposed algorithm achieved improvements
within ranges of 11%–44% and 13%–46%when compared to
the CS and Jaya algorithms, respectively.

B. COMPUTATIONAL RESULTS FOR DATASET 2
All instances from Dataset 2 are characterized by the
same bin capacity C = 1000 and various numbers of
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TABLE 5. Dataset 1 (average execution time, AvgT ).

FIGURE 9. Average execution time (AvgT) of some instances.

items n = {50, 100, 200, 500}. In Dataset 2, the weight
of an item is determined by two parameters: the aver-
age weight and delta. The average weight avgWeight =
{C/3,C/5,C/7,C/9}, and delta represents the maximum
deviation of each wj from avgWeight , where delta =

{20%, 50%, 90%}. The proposed algorithm and other com-
pared algorithms were tested on ten instances from this
dataset, and the instances were named ‘‘NxWyBzRv’’, with
parameters defined in Table 6.

The solutions of the BPP instances using different algo-
rithms in terms of the number of used bins and the optimal
number of bins for each instance are listed in Table 7.

As shown in the above table, the AFDO algorithm
reached the optimal number of bins in all test instances
(i.e., b∗ = m∗). Furthermore, the AFDO gained superiority
in terms of the average fitness value when compared with the
other algorithms (PSO, CSA, and Jaya algorithm) over ten
runs, as illustrated in Table 8.

For all test instances, the proposed adaptive algorithm
achieves the smallest average fitness value. For example,

TABLE 6. Dataset 2 instances denoted as ‘‘NxWyBzRv’’.

TABLE 7. Instances and the optimal number of bins (dataset 2).

in instance 3 (N1W1B2R7), the AvgF of the AFDO is 0.1229,
the AvgF of the PSO algorithm is 0.169, the AvgF of the CSA
is 0.1536, and the AvgF of the Jaya algorithm is 0.1536.

Although all the algorithms reached the optimal number
of bins as a solution for some instances (e.g., instances 4, 5,
7 and 9) for Dataset 2, differences occurred. For example,
when solving instance 4 (N1W2B2R9), all the algorithms
reached the optimal number of bins (i.e., m∗ = 11) but
with different AvgF values. The AvgF values of the AFDO,
PSO, CS, and Jaya algorithms are 0.118, 0.1205, 0.1219, and
0.1236, respectively.

In some instances, such as instance 7 (N2W2B3R9),
the proposed algorithm achieves the minimum fitness value
(Min.= 0.075), which was better than the minimum fitness
values of the other algorithms (Min.= 0.076) with different
packing schema for packing 100 items into 20 bins, as shown
in Figs. 10 and 11.

The AFDO algorithm has shown its efficiency not only in
terms of the average fitness value but also in terms of the
average execution time, as illustrated in Table 9.

The efficiency of the proposed algorithm in terms of the
execution time is illustrated in Table 9, as it required the
shortest time to pack a set of items into the minimum number
of bins.
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TABLE 8. The results of dataset 2 (average fitness value, AvgF ).

FIGURE 10. Packing solution for instance N2W2B3R9 according to the
AFDO algorithm.

For example, in instance, 6 (N2W2B1R2), the AvgT value
of the AFDO algorithm was 182.1 ms, whereas those of the
PSO, CS, and Jaya algorithms were 228.0909, 309.6, and
306.9 ms, respectively. The AvgT of the adaptive algorithm
throughout different test instances improved by up to 56%
when compared with that of PSO, 51% when compared with
that of the CSA and 48%when compared with that of the Jaya
algorithm.

The capability of the adaptive algorithm to solve the
1D-BPP was reflected not only by obtaining the optimal
number of bins (e.g., instances 1, 2, 6, 9 and 10) but also in
requiring fewer iterations, as illustrated in Fig. 12.

The figure shows the effectiveness of the AFDO solution
for solving instance N4W4B2R7 in the fewest number of

FIGURE 11. Packing solution for instance N2W2B3R9 according to the
PSO, CS, and Jaya algorithms.

iterations. The solution improved during the iterative process
(e.g.,, the number of bins is 58 for the first 20 iterations) to
reach the optimal number of bins (b∗ = m∗ = 57) at itera-
tion 22, and the other algorithms did not reach the optimal
number of bins through the maximum number of iterations.

All of the above results of test instances from
Dataset 2 unquestionably demonstrate the effectiveness and
efficiency of the proposed algorithm for solving the 1D-BPP
with improvements in the quality of the solution.

C. COMPUTATIONAL RESULTS FOR DATASET 3
Five instances from Dataset 3 are tested with the number of
items n = 200 and the largest bin capacity C = 100, 000.
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TABLE 9. Dataset 2 (average execution time, AvgT ).

FIGURE 12. b∗ of N4W4B2R7 (AFDO algorithm).

The weight of each item wj is within the range
[20, 000, 35, 000] for j = 1..., n to guarantee the diversity of
the packing problem. These instances are named ‘‘HARDv,’’
where v=0. . . 9. Table 10 lists the results of the compared
algorithms in terms of the number of used bins b∗ and the
optimal number of bins for each instance m∗.
Although the solution of the AFDO algorithm for this

dataset did not reach the optimal number of bins, the solution
was better than those of the PSO, CS and Jaya algorithms. For
example, in instance 5 (HARD7), the proposed adaptive algo-
rithm packed items into 58 bins (i.e., b∗= 58), while other
algorithms packed the same number of items into 59 bins
(i.e., b∗= 59).
In addition, the AFDO algorithm achieved the smallest

average fitness value for all test instances over ten runs,
as shown in Table 11.

Regarding instance 3 (HARD4), the proposed algorithm
obtained an average fitness value of AvgF= 0.1814, while
the PSO, CS, and Jaya algorithms obtained values of 0.1939,
0.1934 and 0.1941, respectively. The improvement in the
AFDO in terms of the average fitness value for different
test instances ranged from 5% to 7% when compared with
the PSO and CSA results and reached up to 10% when

TABLE 10. Instances and the optimal number of bins (dataset 3).

compared with the value for the Jaya algorithm. In addition,
the proposed algorithm recorded the smallest minimum fit-
ness value via the adaptive procedure with different operators
when searching for an optimal solution. For example, as in
instance 2 (HARD3), theMin. value of the AFDOwas 0.171,
which improved by 4%, 6%, and 5% when compared with
that of PSO (Min.= 0.179), the CSA and the Jaya algorithm,
respectively.

Obtaining a high-quality solution within a reasonable exe-
cution time is an essential factor, especially when there are
substantial scaling problems. The AFDO algorithm outper-
forms other comparison algorithms in solving the 1D-BPP,
as shown in Table 12, in terms of the average execution time
to achieve a feasible packing solution for a broad set of items.

As stated in Table 10, as an example, when solving instance
4 (HARD5) for packing 200 items, all of the comparison
algorithms reached the same number of bins (b∗= 60) but
at different times. The proposed adaptive algorithm (AFDO)
requires an average execution time of 486 ms, and the PSO,
CS, and Jaya algorithms require execution times of 718.6,
589.5, and 571.8 ms, respectively.

Fig. 13 shows the performance percentage (PP%) of the
proposed AFDO algorithm compared to that of the other
algorithms in obtaining solutions for the five instances in
terms of the average execution time.

The above figure shows the performance of the pro-
posed algorithm compared with that of the other algorithms.
The reduction in AvgT via the FDO algorithm ranged
from 17% to 34% when compared with that of PSO, from
16% to 38% when compared with that of the CSA and
reached up to 34% when compared with that of the Jaya
algorithm for different instances.

As mentioned above, all of the tests show that the best-
performing algorithm is the AFDO, as it has the smallest
average fitness value and shortest average execution time
and achieves the optimal number of bins in all instances
for Datasets 1 and 2. For Dataset 3, the AFDO achieved
the lowest number of bins with the shortest execution time
compared with the other algorithms.

VOLUME 8, 2020 97971



D. S. Abdul-Minaam et al.: Adaptive FDO for the 1D-BPP

TABLE 11. The results of dataset 3 (average fitness value, AvgF ).

TABLE 12. The results of dataset 3 (average execution time, AvgT ).

FIGURE 13. Performance percentage of AFDO in terms of the average
execution time.

VII. CONCLUSION
The BPP is one of the most famous combinatorial optimiza-
tion problems, and it has a surprisingly large number of appli-
cations, especially in logistics and supply chain management.
Solving this problem in a reasonable time requires an efficient
optimization method. This study is based on the adaptive
version of the most recent swarm algorithm called FDO. The
proposed AFDO algorithm is based on a feasible random ini-
tial population through a modified FF heuristic and improves
the BPP solution by adjusting the parameters to search for the
final optimal solution. In this study, the proposed algorithm
and other popular algorithms, including the PSO, CS, and
Jaya algorithms, were tested on three standard benchmark
datasets to demonstrate the efficiency and effectiveness of the

AFDO in solving the BPP. These datasets were characterized
by various numbers of items and different bin capacities to
guarantee a large number of packing solutions. The proposed
algorithm and other algorithms were tested on 15 instances
in the first dataset, and the results demonstrated the effec-
tiveness of the AFDO algorithm in terms of achieving the
optimal solution (i.e., the optimal number of bins) within
a reasonable time compared to the other algorithms. At the
same time, the proposed adaptive algorithm achieved an aver-
age fitness value that was up to 19% better than the PSO aver-
age fitness value, 22% better than the CSA average fitness
value, and 18% better than the Jaya algorithm average fitness
value when obtaining solutions for the different instances in
Dataset 1.

Moreover, updating the phase of the adaptive procedure
via different operator strategies led to the optimal solution
with fewer iterations. With a larger bin capacity than in the
previous case, all compared algorithms were tested on ten
instances from the second dataset, where each instance was
associated with various item weights and packing schemes.
In all test instances, the AFDO algorithm reached theminimal
number of used bins, with an average execution time that
was 10% to 56% better than that of PSO, 5% to 46% better
than that of the CSA and 48% better than that of the Jaya
algorithm. For a large-scale 1D-BPP, the proposed algorithm
displayed high efficiency in obtaining solutions for instances
from the third dataset with the smallest minimum and average
fitness values when compared to those of other algorithms.
In the last dataset, the AFDO did not reach the optimal
number of bins but achieved a better item packing schema
with a lower number of bins compared to the results of the
PSO, CS, and Jaya algorithms. Based on the experimental
results and a performance analysis of various test instances
(i.e., 30 instances), the results showed that the proposed
algorithm can be used to effectively explore the search space
and locate an optimal solution with the smallest fitness value
within a reasonable time when compared with other popular
algorithms. In the future, we plan to improve this algorithm in
two ways. The first is by comparing the proposed algorithm
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with other recent metaheuristic algorithms and testing the
methods with the remaining instances from each dataset.
The second is by applying the proposed algorithm to real-life
packing problems in a specific domain, such as the logistic
and transportation sectors.
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